Algoritmos “vigilan” a la Inteligencia Artificial
[Agencia SINC] Investigadores de EE UU y Brasil han desarrollado un sistema que ayuda a garantizar que los algoritmos de aprendizaje automático, usados en IA, funcionen adecuadamente y no reproduzcan sesgos discriminatorios. La técnica ha sido probada con éxito en aplicaciones de educación y salud.
Estos algoritmos que son capaces de entrenar a los algoritmos de aprendizaje automático para que tengan un buen funcionamiento y eviten los sesgos mencionados.
La inteligencia artificial (IA) tiene cada vez más usos comerciales, gracias a la creciente destreza de los algoritmos de aprendizaje automático (machine learning, ML), utilizados, por ejemplo, en la conducción de coches autónomos, el control de robots o la automatización de la toma de decisiones.
Pero a medida que la IA se extiende a tareas más delicadas, como puede ser el diagnóstico médico o la selección de personal para puestos de trabajo, existe una presión creciente para que se ofrezcan garantías de que estos sistemas, que se alimentan de datos históricos, no reproduzcan sesgos discriminatorios.
El sistema permite a los diseñadores de algoritmos de machine learning predecir, con garantías, la fiabilidad de los sistemas alimentados con datos históricos |
|
Ahora, un equipo liderado por las universidades estadounidenses de Stanford y Massachusetts Amherst, en colaboración con la Universidad Federal de Río Grande del Sur, de Brasil, ha desarrollado una técnica que, según sus creadores, permitirá proporcionar estas garantías. El sistema, cuyos resultados se presentan en Science, ha sido probado en aplicaciones de IA, en los ámbitos de educación y salud.
En concreto, los investigadores han desarrollado algoritmos que son capaces de entrenan a los algoritmos de machine learning para que tengan un buen funcionamiento y eviten los sesgos. Emma Brunskill, investigadora de Stanford y autora principal del estudio, indica que con este trabajo pretenden “promover una IA que respete los valores de sus usuarios humanos y justifique la confianza que depositamos en los sistemas autónomos”.
El estudio se basa en la idea de que si los resultados o comportamientos inseguros o injustos pueden ser definidos matemáticamente, también debería ser posible crear algoritmos que puedan aprender de los datos y evitar resultados no deseados con gran fiabilidad.
Predecir la fiabilidad de los algoritmos: Los investigadores también querían desarrollar un conjunto de técnicas que facilitaran a los usuarios de estos algoritmos -que no suelen ser científicos computacionales, sino compañías, centros de investigación, etc.- las especificaciones de los tipos de comportamiento inadecuado que deseen restringir y permitan a los diseñadores de algoritmos de aprendizaje automático predecir, con garantías, la fiabilidad de los sistemas alimentados con datos históricos en IA.
Los algoritmos se han probado con éxito en la mejora de las predicciones de notas de los universitarios para eliminar los sesgos de género |
|
Según comenta Philip Thomas, científico computacional de la Universidad de Massachusetts Amherst y primer autor del estudio, “con nuestro sistema los diseñadores de algoritmos de aprendizaje automático podrán facilitar a los investigadores, organismos y empresas -que deseen incorporar la IA en sus productos y servicios- la descripción de resultados o comportamientos no deseados que el sistema de IA evitará con alta probabilidad”.
Los autores han probado su método en los algoritmos usados en la predicción del promedio de calificaciones de los estudiantes universitarios basada en los resultados de los exámenes, una práctica común que puede resultar en sesgos de género. El objetivo era mejorar la imparcialidad de estos algoritmos. Así, utilizando un conjunto de datos experimentales, dieron instrucciones matemáticas a los algoritmos para evitar que realizaran predicciones que sistemáticamente sobreestimaran o subestimaran las calificaciones para un género determinado.
|